Stochastic Differential Delay Equation, Moment Stability, and Application to Hematopoietic Stem Cell Regulation System
نویسندگان
چکیده
We study the moment stability of the trivial solution of a linear differential delay equation in the presence of additive and multiplicative white noise. The results established here are applied to examining the local stability of the hematopoietic stem cell (HSC) regulation system in the presence of noise. The stability of the first moment for the solutions of a linear differential delay equation under stochastic perturbation is identical to that of the unperturbed system. However, the stability of the second moment is altered by the perturbation. We obtain, using Laplace transform techniques, necessary and sufficient conditions for the second moment to be bounded. In applying the results to the HSC system, we find that the system stability is sensitive to perturbations in the stem cell differentiation and death rates, but insensitive to perturbations in the proliferation rate.
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملModelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model with Distributed Delay∗
Under the action of growth factors, proliferating and nonproliferating hematopoietic stem cells differentiate and divide, so as to produce blood cells. Growth factors act at different levels in the differentiation process, and we consider their action on the mortality rate (apoptosis) of the proliferating cell population. We propose a mathematical model describing the evolution of a hematopoiet...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملAge-structured Model of Hematopoiesis Dynamics with Growth Factor-dependent Coefficients
We propose and analyze an age-structured partial differential model for hematopoietic stem cell dynamics, in which proliferation, differentiation and apoptosis are regulated by growth factor concentrations. By integrating the age-structured system over the age and using the characteristics method, we reduce it to a delay differential system. We investigate the existence and stability of the ste...
متن کاملDelay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch
A nonlinear system of two delay differential equations is proposed to model hematopoietic stem cell dynamics. Each equation describes the evolution of a sub-population, either proliferating or nonproliferating. The nonlinearity accounting for introduction of nonproliferating cells in the proliferating phase is assumed to depend upon the total number of cells. Existence and stability of steady s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 67 شماره
صفحات -
تاریخ انتشار 2007